The given system of equations:
(k − 1)x − y = 5
⇒ (k − 1)x − y − 5 = 0 ...(i)
And, (k + 1)x + (1 − k)y = (3k + 1)
⇒ (k + 1)x + (1 − k)y − (3k + 1) = 0 ...(ii)
These equations are of the following form:
a1x + b1y + c1 = 0, a2x + b2y + c2 = 0
Here, a1 = (k − 1), b1= −1, c1 = −5 and a2 = (k + 1), b2 = (1 − k), c2 = −(3k + 1)
For an infinite number of solutions, we must have:
Now, we have the following three cases:
Case I:
Case II:
Case III:
Hence, the given system of equations has an infinite number of solutions when k is equal to 3.