The given system of equations:
2x + (k − 2)y = k
⇒ 2x + (k − 2)y − k = 0 ....(i)
And, 6x + (2k − 1)y = (2k + 5)
⇒ 6x + (2k − 1)y − (2k + 5) = 0 ....(ii)
These equations are of the following form:
a1x + b1y + c1 = 0, a2x + b2y + c2 = 0
Here, a1 = 2, b1= (k − 2), c1 = −k and a2 = 6, b2 = (2k − 1), c2 = −(2k + 5)
For an infinite number of solutions, we must have:
Now, we have the following three cases:
Case I:
Case II:
Case III:
Hence, the given system of equations has an infinite number of solutions when k is equal to 5.