The given system of equations:
2x + 3y = 7
⇒ 2x + 3y − 7 = 0 ....(i)
And, (k − 1)x + (k + 2)y = 3k
⇒ (k − 1)x + (k + 2)y − 3k = 0 ....(ii)
These equations are of the following form:
a1x + b1y + c1 = 0, a2x + b2y + c2 = 0
Here, a1 = 2, b1= 3, c1 = −7 and a2 = (k − 1), b2 = (k + 2), c2 = −3k
For an infinite number of solutions, we must have:
Now, we have the following three cases:
Case I:
Case II:
Case III:
Hence, the given system of equations has an infinite number of solutions when k is equal to 7.