The given function f(x) is continuous at x = 0.
limx→0f(x)
0+10−1=limx→0(√1+kx−√1−kxx)
⇒−1=limx→0(√1+kx−√1−kxx)(√1+kx+√1−kx√1+kx+√1−kx)
⇒−1=limx→0(1+kx−1+kxx[√1+kx+√1−kx])
⇒−1=limx→0(2k√1+kx+√1−kx)
When k=−1
⇒−1=2k2
k=−1
Therefore the value of k is −1.