The correct option is A k=14
(k−12)x2−2(k−12)x+2=0
Since, the roots are real and equal. The discriminant is zero.
D=b2−4ac=0
(−2(k−12))2−4(k−12)(2)=0
4(k−12)2−8k+96=0
4k2−96k+576−8k+96=0
4k2−104k+672=0
k2−26k+168=0
k2−14k−12k+168=0
(k−14)(k−12)=0
k=12,14
Neglect k=12 because the equation will not be quadratic if we substitute this value of k.
Hence, k=14