The correct option is A k=3 or 1
Given expression (k−2)x2+2(2k−3)x+5k−6=0 has equal roots.
Therefore, D=b2−4ac=0
We have a=(k−2),b=2(2k−3),c=5k−6
Thus (2(2k−3))2−4(k−2)(5k−6)=0
⇒[(2k−3)2−(k−2)(5k−6)]=0
⇒[(4k2+9−12k)−(5k2−16k+12)]=0
⇒[4k2+9−12k−5k2+16k−12]=0
⇒[−k2+4k−3]=0
⇒k2−4k+3=0
⇒(k−1)(k−3)=0
⇒ k=1 or k=3