Consider the given quadratic equation.
x2−2kx+7k−12=0
We know that, if a quadratic equation ax2+bx+c=0 has equal roots, then
b2−4ac=0
Here,
a=1
b=−2k
c=7k−12
Therefore,
4k2−4(7k−12)=0
4k2−28k+48=0
k2−7k+12=0
(k−3)(k−4)=0
k=3,4
Hence, these are required values of k.