Let A(−1, 3), B(2, k) and C(5, − 1) be the given points. Then,
(x1 = − 1, y1 = 3), (x2 = 2 , y2 = k) and (x3 = 5, y3 = − 1)
Since the given points are collinear, the area of the triangle formed by them must be 0.
⇒[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)] = 0
⇒ − 1(k + 1) + 2( − 1 − 3) + 5(3 − k) = 0
⇒ − 1(k + 1) + 2( − 4) + 5(3 − k) = 0
⇒ − k − 1 − 8 + 15 − 5k = 0
⇒ − 6k = − 6
⇒ 6k = 6 ⇒ k = 1
Hence, the required value of k is 1.