Find the value of k, if 2x−3 is a factor of 2x3−kx2+x+12.
Open in App
Solution
(2x−3) is a factor of p(x)=2x3−9x2+x+K, If (2x−3)=0,x=32 If (2x−3) is a factor of p(x) then p(32)=0 p(x)=2x3−9x2+x+K, ⇒p(32)=2(32)−9(32)+32+K=0 ⇒2(278)−9(94)+32+K=0 ⇒(274−814+32+K=0)×4 27−81+6+4K=0 −48+4K=0 4K=48 So K=12