Find the value of k if (2x−3) is a factor of 2x3−9x2+x+k.
Given: (2x−3) is a factor of f(x)=2x3−9x2+x+k
(2x−3)=0 when x=32
So by factor theorem f(32)=0
⇒2×(32)3−9(32)2+32+k=0
⇒2×(278)−9×(94)+32+k=0
⇒274−814+64+k=0
⇒(334)−(814)+k=0
⇒k=484=12