Given: fx=kcosxπ-2x, x≠π23, x=π2 If f(x) is continuous at x = π2, then limx→π2fx = fπ2 ⇒ limx→π2kcosxπ-2x=3 ...(1) Putting π2-x=h, we get limx→π2k cos xπ-2x=limh→0k cos π2-hπ-2π2-h From (1), we have limh→0k cos π2-hπ-2π2-h=3 ⇒limh→0k sin h2h=3 ⇒limh→0k sin hh=6 ⇒k limh→0sin hh=6 ⇒k×1=6 ⇒k=6 Hence, for k=6 , f(x) is continuous at x = π2.