(i) In the given series
13+23+33+....+k3=6084,
Sk=6084 represents the sum of cubes of natural numbers upto
k. Thus, we can write the formula instead of the series and that is:
Sum of cubes of n natural numbers is Sn=[n(n+1)2]2
Substitute n=k and Sn=6084 in Sn=[n(n+1)2]2 as follows:
Sn=[n(n+1)2]2⇒6084=[k(k+1)2]2⇒k(k+1)2=√6084⇒k(k+1)2=78
⇒k(k+1)=78×2⇒k2+k=156⇒k2+k−156=0⇒k2+13k−12k−156=0
⇒k(k+13)−12(k+13)=0⇒(k−12)(k+13)=0⇒k=12,k=−13
Ignore the negative values of k.
Hence k=12.
(ii) In the given series 13+23+33+....+k3=2015, Sk=2015 represents the sum of cubes of natural numbers upto k. Thus, we can write the formula instead of the series and that is:
Sum of cubes of n natural numbers is Sn=[n(n+1)2]2
Substitute n=k and Sn=6084 in Sn=[n(n+1)2]2 as follows:
Sn=[n(n+1)2]2⇒2025=[k(k+1)2]2⇒k(k+1)2=√2025⇒k(k+1)2=45
⇒k(k+1)=45×2⇒k2+k=90⇒k2+k−90=0⇒k2+10k−9k−90=0
⇒k(k+10)−9(k+10)=0⇒(k−9)(k+10)=0⇒k=9,k=−10
Ignore the negative values of k.
Hence k=9.