Find the value of 'k' if the expression (4−k)x2+2(k+2)x+5k+1 is a perfect square
0
1
2
3
Discriminant = 0 (2(k+2))2−4(8k+1)(4−k)=0 4[(k2+4k+4)−(32k+4−8k2−k)]=0 k2+4k+4−32k−4+8k2+k)]=0 9k2−27k=0 ⇒k=0 or k=3