Find the value of ′k′ if the expression (4−k)x2+2(k+2)x+8k+1 is a perfect square
3
(4−k)x2+2(k+2)x+8k+1
For the given expression to be a perfect square, discriminant needs to be =0
⇒(2(k+2))2−4(8k+1)(4−k)=0
⇒4[(k2+4k+4)−(32k+4−8k2−k)]=0
⇒k2+4k+4−32k−4+8k2+k)]=0
⇒9k2−27k=0
⇒9k(k−3)=0
⇒k=0 or k=3