Find the value of k so that the area of the triangle with vertices A(k+1,1),B(4,-3) and C(7, -k) is 6 square units.
Let A(x1,y1)=A(k+1,1),B(x2,y2)=B(4,−3) and C(x3,y3)=C(7,−k).
Now
Area (ΔABC)=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]⇒6=12[(k+1)(−3+k)+4(−k–1)+7(1+3)]⇒12=[k2–2k–3–4k–4+28]⇒12=k2–6k–21⇒k2–6k–9=0⇒(k−3)2=0⇒k−3=0⇒k=3