The general equation of second degree ax2+2hxy+by2+2gx+2fy+c=0
Represents a pair of straight lines if Δ=abc+2fgh−af2−bg2−ch2=0
For 12x2−kxy+2y2+11x−5y+2=0
a=12,b=2,h=−k2,g=112,f=−52,c=2Δ=(12×2×2)+(2×−52×112×−k2)−(12×−52×−52)−(2×112×112)−(2×−k2×−k2)=048+55k4−75−1212−k22=0k22−55k4+1212+28=02k2−55k+350=0
Factorising the equation
2k2−20k−35k+350=02k(k−10)−35(k−10)=0(2k−35)(k−10)=0k=10,352⇒k=10,1712