wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of k such that the line (k - 2) x + (k + 3) y - 5 = 0 is :

(i) perpendicular to the line 2x - y + 7 = 0

(ii) parallel to it.

Open in App
Solution

(k - 2)x + (k + 3)y - 5 = 0 ....(1)

(k + 3)y = -(k - 2)x + 5

y =open parentheses fraction numerator 2 minus k over denominator k plus 3 end fraction close parentheses x plus fraction numerator 5 over denominator k plus 3 end fraction

Slope of this line = m1 = fraction numerator 2 minus k over denominator k plus 3 end fraction

(i) 2x - y + 7 = 0

y = 2x + 7 = 0

Slope of this line = m2 = 2

Line (1) is perpendicular to 2x - y + 7 = 0

m subscript 1 cross times m subscript 2 equals negative 1 open parentheses fraction numerator 2 minus k over denominator k plus 3 end fraction close parentheses cross times 2 equals negative 1 4 minus 2 k equals negative k minus 3 k equals 7

(ii) Line (1) is parallel to 2x - y + 7 = 0

m subscript 1 equals m subscript 2 fraction numerator 2 minus k over denominator k plus 3 end fraction equals 2 k equals fraction numerator negative 4 over denominator 3 end fraction


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equation of Line perpendicular to a given Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon