wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of (cosπ8+isinπ8)×(cosπ12+isinπ12)×(cosπ24+isinπ24)×(cosπ4+isinπ4)
___

Open in App
Solution

(cosπ8+isinπ8)×(cosπ12+isinπ12)×(cosπ24+isinπ24)×(cosπ4+isinπ4) (1)

We know, eiπ8 = cosiπ8+isiniπ8

Similarly, eiπ12=cosπ12+isinπ12,eiπ24=cosπ24+isinπ24,eiπ4=cosπ4+isinπ4

From equation (1)

=eiπ8 × eiπ12 ×eiπ24 × eiπ4

=e(iπ8+iπ12+iπ24+iπ4)

=ei(π8+π12+π24+π4)

Convert this Euler's form to polar form

=cos(π8+π12+π24+π4)+isin(π8+π12+π24+π4)

=cosπ2+isinπ2

= 0 + i = i


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Square Root of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon