Find the value of limn→∞1+2+3+....nn2
1
2
13
12
We have, limn→∞1+2+3+....nn2
Here, numerator is sum of first n natural number
we know, ∑n=n(n+1)2
So, limn→∞n(n+1)2n2
= limn→∞(n+1)2n
= limn→∞(12+12n)
=12+1∞
=12+0
=12