Find the value of limx→0120.tan x−x−x3x3
We will sove this problem using the expansion of tanx
tan x=x+x33+2x515+....
⇒limit=limx→0120×(x+x33+2x515....−x−x3x3)
=limx→0120×(−2x33+2x515....x3)
=120limx→0(−23+215x2.....)
=120×(−23)
=−80
You are given cos x=1−x22!+x44!−x66!......;
sin x=x−x33!+x55!−x77!......
tan x=x+x33+2.x515......
Find the value of limx→0x cosx+sinxx2+tanx
(i) Using L ' Hospital's rule find (a) limx→0tanx−xx3 (b) limx→0ex−x−1x2