Find the value of limx→ axn−anx−a
We have limx→ axn−anx−a
If we substitude x=a in the given limit, we find that numerator and
denominator of the limit becomes 00.form
limx→ axn−anx−a
Substituting x=a+h
limh→ 0(a+h)n−ana+h−a
=limh→ 0an{(1+ha)n−1}h
we can apply binomial expression of (1+x)n where |x| < 1, ∣∣ha∣∣ < 1
(1+x)n=1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3+......
When x infinitely small (approaching to zero) such that we can
ignore higher power of x, and have
(1+x)n=1+nx (approximately)
So, we can write
=limh→ 0an{1+nha−1}h
=limh→ 0an{.n/ha}/h
=limh→ 0an.na
=nan−1
So,limx→ axn−anx−a=nan−1
Option C is correct