Find the value of limx→π4[(sinx)−8xπ]
We have seen that if limx→a f(x) and limx→a g(x)
exists, then
limx→a (f(x))g(x) = [limx→af(x)]limx→ag(x)
In this case, limx→π4 sin x and limx→π4−8xπ exist.
⇒limx→π4(sinx)−8xπ=[limx→π4sinx]limx→π4−8xπ
=(1√2)−2
=(√2)2
= 2