limx→tan(π4+x)1xlimx→0(tan1x(π4+x))
Refine: limr→0[tan(x+π4)1x]
Apply exponents rule : ax=eln(ax)=ex.ln(a)
(tan(x+π4))1x=e1xln(tan(x+π4))
=limx→0(e1xln(tan(x+π4)))
Apply limit chain rule i,e.
if limu→0f(4)=L&limx→0g(x)=b,&f(x) is
continuous at x=b, then limx→af(f(g(x))=L
∴g(x)=12(tan(x+π4)),f(4)=e4
∴limx→0(12ln(tan(x+π4)))=2
limu→2(e4)=e2
u→2+
By chain rule,
=e2