Find the value of limit limx→π62sin2x+sinx−12sin2x−3sinx+1=.
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−3 limx→π62sin2x+sinx−12sin2x−3sinx+1=limx→π62sin2x+2sinx−sinx−12sin2x−2sinx−sinx+1=limx→π62sinx(sinx+1)−1(sinx+1)2sinx(sinx−1)−1(sinx−1)=limx→π6(2sinx−1)(sinx+1)(2sinx−1)(sinx−1)=limx→π6sinx+1sinx−1=12+112−1=−3