wiz-icon
MyQuestionIcon
MyQuestionIcon
9
You visited us 9 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of limit limxπ62sin2x+sinx12sin2x3sinx+1=.

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 3
limxπ62sin2x+sinx12sin2x3sinx+1=limxπ62sin2x+2sinxsinx12sin2x2sinxsinx+1=limxπ62sinx(sinx+1)1(sinx+1)2sinx(sinx1)1(sinx1)=limxπ6(2sinx1)(sinx+1)(2sinx1)(sinx1)=limxπ6sinx+1sinx1=12+1121=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon