The points are collinear if the area of the triangle formed by these three points is zero.
Let the points be
A(3,5), B(m,6) and C(12,152)
ar△ABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)] [1 mark]
Substituting the values
12[3(6−152)+m(152−5)+12(5−6)]=0
⇒3(−32)+5m2−12=0
⇒−92−12+5m2=0
⇒−102+5m2=0
⇒5m=10⇒m=2
[1 mark]