Given that the quadratic equation
mx(x−7)+49=0
find the value of m
Then solve
⇒mx(x−7)+49=0
⇒mx2−7mx+49=0
It is a quadratic equation
Where a=m,b=−7mandc=49
We know that for equal roots
D=0
b2−4ac=0
⇒(−7m)2−4(m)(49)=0
⇒49m2−49×4(m)=0
⇒49(m2−4m)=0
⇒m(m−4)=0
Then m=0andm=4
Sincem=0 is invalid value
Hence the value of m=4 .