The correct option is A [9,∞)
Condition: When roots are positive :
(i) D≥0
(ii) Sum of roots >0
(iii) product of roots >0
Now, solve it one by one
(i) D≥0
⇒(m−3)2−4m≥0
⇒m2−6m+9−4m≥0
⇒m2−10m+9>≥
⇒(m−1)(m−9)≥0
m∈(−∞,1]∪[9,∞)
(ii) Sum of roots >0
⇒ Sum of roots =(m−3)>0
⇒(m−3)>0⇒m>3
m∈(3,∞)
(iii) Product of roots >0
⇒ Product of roots =m1>0
m>0⇒m∈(0,∞)
Now, taking intersection of all the three conditions, we get
m∈[9,∞)