The correct option is C (−∞,0)
Given: x2−(m−3)x+m=0; m∈R
On comparing with standard quadratic expression f(x)=ax2+bx+c, we have a=1,b=−(m−3),c=m.
Applicable conditions are
(i) D>0
(ii) Product of root <0
Taking (i) D>0
⇒(−(m−3))2−4⋅1⋅m>0
⇒m2−6m+9−4m>0
⇒m2−10m+9>0
⇒(m−1)(m−9)>0
m∈(−∞,1)∪(9,∞)
(ii) Product of roots <0
⇒m1<0⇒m<0
m∈(−∞,0)
Now, taking intersection of both the solution sets, we get:
m∈{(−∞,1)∪(9,∞)}∩(−∞,0)
m∈(−∞,0)