The correct option is C −1√2
Let α be a common root for the given equations.
Then α will satisfy the equations,
⇒3α2−2mα−4=0⋯(i)
⇒α2−4mα+2=0⋯(ii)
Now, solve these equations by cross multiplication method.
α2−4m−16m=α−4−6=1−12m+2m
⇒α2−20m=α−10=1−10m
⇒α2−2m=α−1=1−m
⇒α2=2 & α=1m
⇒(1m)2=2
1m2=2⇒m2=12⇒m=±1√2
⇒m=±1√2