Find the value of nC0+nC1+...........+nCn
0
1
Consider the binomial expansion of (1+x)n
(1+x)n= nC0 nC1..........nCn
Put x = 1
⇒ nC0+nC1+nC2...........+nCn
⇒ nC0+nC1+nC2...........+nCn = 2n
Find the value of nC0.(n+1)+n.nC1+(n−1)nC2....1.nCn
nC0 + 2.nC1 + 3.nC2 +..............(n+1)nCn =
Find 12nC1 - 23nC2 + 34nC3.................(−1)n+1nn+1×nCn