Find the value of n, so that an+1+bn+1an+bn is the geometric mean between a and b
Or
If f is a function satisfying f(x+y)=f(x)f(y) for all x,y∈N such that f(1)=3 and ∑nx=1f(x)=120 find the value of n.
It is given that an+1+bn+1an+bnis the Gm between a and b.
∴an+1+bn+1an+bn=√ab
⇒an=1+bn+1=a1/2.b1/2(an+bn)
⇒an+1−an+12.b12==a12bn+12−bn+1
⇒an+12(a1/2−b1/2)=bn+12(a1/2−b1/2)
⇒an+12=bn+12[∵a1/2−b1/2≠0,as a ≠b]
⇒an+1/2bn+1/2=1⇒(ab)n+12=(ab)0
⇒n+12=0⇒=−12
Or
we have, f(x+y)=f(x).f(y)forx,y∈N
Given ,f(1)=3and∑nx=1=120
Now,∑nx=1f(x)=f(1)+f(2)+f(3)+f(4)+.....+f(n)
⇒120=f(1)+f(1).f(1)2 times+f(1).f(1).f(1)3 times+...+f(1).f(1)...f(1)n times
⇒120=3+32+33+...+3n
⇒1203(3n−1)3−1
⇒3n−1=80⇒3n=81
⇒3n=34⇒n=4