wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of n such that
(i) nP5=42 nP3, n>4
(ii) nP4n1P4=53, n>4

Open in App
Solution

(1) Step 1:
Calculating nP5

nP5=n!(n5)!
nP5=n(n1)(n2)(n3)(n4)(n5)!(n5)!
nP5=n(n1)(n2)(n3)(n4)...(i)

Step 2:
Calculating 42nP3

42nP3=42n!(n3)!
=42n(n1)(n2)(n3)!(n3)!
=42n(n1)(n2)...(ii)

Step 3: By comparing (i) and (ii)
n(n1)(n2)(n3)(n4)=42n(n1)(n2)
(n3)(n4)=42
n23n4n+1242=0
n27n30=0
n210n+3n30=0
n(n10)+3(n10)=0
(n10)(n+3)=0
n=10 or n=3
But here, n>4 so n=3 not possible.
n=10

(ii) Step 1: Calculating nP4
nP4=n!(n4)!
=n(n1)(n2)(n3)(n4)!(n4)!
=n(n1)(n2)(n3)...(i)

Step 2
Calculating n1P4
n1P4=(n1)!(n14)!
=(n1)!(n5)!
n1P4=(n1)(n2)(n3)(n4)(n5)!(n5)!
n1P4=(n1)(n2)(n3)(n4)...(ii)

Step 3 On solving

nP4n1P4=53
3nP4=5n1P4
3n(n1)(n2)(n3)=5(n1)(n2)(n3)(n4)
3n=5(n4)
3n=5n20
2n=20
n=10

flag
Suggest Corrections
thumbs-up
33
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon