(1) Step 1:
Calculating nP5
nP5=n!(n−5)!
nP5=n(n−1)(n−2)(n−3)(n−4)(n−5)!(n−5)!
nP5=n(n−1)(n−2)(n−3)(n−4)...(i)
Step 2:
Calculating 42nP3
42nP3=42n!(n−3)!
=42n(n−1)(n−2)(n−3)!(n−3)!
=42n(n−1)(n−2)...(ii)
Step 3: By comparing (i) and (ii)
n(n−1)(n−2)(n−3)(n−4)=42n(n−1)(n−2)
⇒(n−3)(n−4)=42
⇒n2−3n−4n+12−42=0
⇒n2−7n−30=0
⇒n2−10n+3n−30=0
⇒n(n−10)+3(n−10)=0
⇒(n−10)(n+3)=0
⇒n=10 or n=−3
But here, n>4 so n=−3 not possible.
∴n=10
(ii) Step 1: Calculating nP4
nP4=n!(n−4)!
=n(n−1)(n−2)(n−3)(n−4)!(n−4)!
=n(n−1)(n−2)(n−3)...(i)
Step 2
Calculating n−1P4
n−1P4=(n−1)!(n−1−4)!
=(n−1)!(n−5)!
n−1P4=(n−1)(n−2)(n−3)(n−4)(n−5)!(n−5)!
n−1P4=(n−1)(n−2)(n−3)(n−4)...(ii)
Step 3 On solving
nP4n−1P4=53
3nP4=5n−1P4
3n(n−1)(n−2)(n−3)=5(n−1)(n−2)(n−3)(n−4)
⇒3n=5(n−4)
⇒3n=5n−20
⇒2n=20
⇒n=10