It is given that nP5=42nP3, then,
n!(n−5)!=42n!(n−3)!
n!(n−5)!=42n!(n−3)(n−4)(n−5)!
(n−3)(n−4)=42
n2−7n+12−42=0
n2−7n−30=0
n2−10n+3n−30=0
n(n−10)+3(n−10)=0
(n+3)(n−10)=0
n=−3,n=10
Since, it is given that n>4, then only value of n is n=10.