(i) 52n × 53 = 59
52n+3 = 59 [since an × am = am+n]
On equating the coefficients:
2n + 3 = 9
⇒ 2n = 9 − 3
⇒ 2n = 6
∴ n =
(ii) 8 × 2n+2 = 32
⇒ (2)3 × 2n+2 = (2)5 [since 23 = 8 and 25 = 32]
⇒ (2)3+ (n+2) = (2)5
On equating the coefficients:
3 + n + 2 = 5
⇒ n + 5 = 5
⇒ n = 5 − 5
∴ n = 0
(iii) 62n+1 ÷ 36 = 63
⇒ 62n+1 ÷ 62 = 63 [since 36 = 62]
⇒
⇒ [since ]
⇒ 62n-1 = 63
On equating the coefficients:
2n - 1 = 3
⇒ 2n = 3 + 1
⇒ 2n = 4
∴ n =