left hand limit at x=π/2,limx→π/2−f(x)=limx→0f(π2−h)
=limh→01−sin3(π2−h)3cos2(π2−h)=1−cos3(−h)3sin2h=00 form
By l hospital, limh→0−3cos2h(−sinh)3×2sinhcosh=−12
For f(n) to be continuous, p=−12
Right hand limit at x=π/2,limx→π/2+f(x)=limh→0f−(π2+h)
=limh→0q(1−sin(π2+h))(π−2(π2−h))2=q(1−cosh)4h2
As cosh=1−2sin2h/2⇒limh→0q(2sin2h/2)h2/4.4
=limh→0q4×2(sinh/2h/2)2=q2
⇒q2=−12⇒q=−1