Limit exists if limx→a−f(x)=limx→a+f(x)=f(a)
limx→a−f(x)=limx→π2−1−sin3x3cos2x
=limx→π2−(1−sinx)(1+sin2x+sinx)3(1−sin2x)
=limx→π2−(1−sinx)(1+sin2x+sinx)3(1−sinx)(1+sinx)
=limx→π2−(1+sin2x+sinx)3(1+sinx)
=(1+sin2π2+sinπ2)3(1+sinπ2)
=1+1+13(1+1)
=12
limx→a+f(x)=limx→π2+q(1−sinx)(π−2x)2
=limx→π2+q(1−cos(π2−x))(π−2x)2
=limx→π2+q(2sin2(π4−x2))16(π4−x2)2
=2q16=q8
Given that the function is continuous
⇒q8=p=12
⇒q=82=4,p=12
∴q=4,p=12