Given, 2x+3y−7=0
⇒−3y=2x−7
⇒y=−23x+73
Comparing with the slope intercept form of line y=m1x+c, we get,
∴ Slope, m1=−23 (1 mark)
Now, 4y−px−12=0 [Given]
⇒4y=px+12
⇒y=px4+124
Comparing with the slope intercept form of line y=m2x+c, we get,
∴ Slope, m2=p4 (1 mark)
Since both the lines are perpendicular to each other,
∴m1m2=−1
⇒−23×p4=−1⇒−2p=−12
⇒p=6 (1 mark)