Consider the given points.
A(−5,1),B(1,p),C(4,−2)
If the given points are collinear, then these points cannot be vertices of any triangles.
So, the area of triangle will be zero.
Therefore,
Δ=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0
−5(p+2)+1(−2−1)+4(1−p)=0
−5p−10−3+4−4p=0
−9p−9=0
−9p=9
p=−1
Hence, the value of p is −1.