Find the value of p so that three lines 3x + y - 2 = 0, px + 2y - 3 = 0 and 2x - y - 3 = 0 may intersect at one point.
The equation of lines are
3x + y - 2 = 0, px + 2y - 3 = 0 and 2x -y - 3 = 0,
We know that three lines are concurrent if
a3(b1c2−b2c1)+b3(c1a2−c2a1)+c3(a1b2−a2b1)=0
∴ 2[1×(−3)−2×(−2)]+(−1)[−2×p−(−3)×3]+(−3)[3×2−p×1]=0
⇒ 2[−3+4]−1[−2p+9]−3[6−p]=0
⇒ 2 + 2p - 9 - 18 + 3p = 0
⇒ 5p - 25 = 0
⇒ p = 5