Find the value of sin2π16 + sin22π16 + sin23π16 +.....sin216π16
Angles in the sine function are in arithmetic progression we can use sinecosine series.
We know cos 2θ = 1 - 2 sin2θ
sin2θ = 12 (1 - cos2θ)
Each term of the given series can be written as cos2θ from
12(1−cos2π16) + 12(1−cos4π16) + ....12(1−cos32π16)
= 162 - 12[cos2π16+cos4π16+cos6π16+....cos32π16]
α=2π16,β=2π16, n = 16
= 162 - 12[sin16×2π16×2sin(2π16×2).cos(2π16+15.2π16×2)]
= 8 - 12[sinπsin(π16).cos(17π16)]
= 8 - 12×0
= 8