Find the value of sin210∘+cos120∘+tan225∘+cot315∘+sec300∘+cosec150∘.
We know the trigonometric ratios of 0∘,30∘,45∘,60∘,90∘.
Let's try to find out whether the angles given in the question can be reduced to standard angles.
For eg. 210∘ can be written as (180 + 30∘)
120∘ can be written as (90∘+30∘)
Similarly, other angles can also be brought down to standard angles.
From question,
Sin210∘+cos120∘+tan225∘+cot315∘+sec300∘+cosec150∘
=sin(180∘+30∘)+cos(90∘+30∘)+tan(180∘+45∘)+cot(270∘+45∘)+sec(360∘−60∘)+cosec(180∘−30∘)
= −sin30∘−sin30∘+tan45∘−tan45∘+sec60∘+cosec30∘
We get,
= −12 - 12 + 1 - 1 + 2 + 2 (substituting the values of standard angles)
= 3