⇒(cos47π16+sin47π16)+(cos45π16+sin45π16)
We know that ⇒a4+b4=(a2+b2)2−2a2b2
Using this property we get,
⇒[(cos27π16+sin27π16)2−2sin27π16cos27π16]+[(cos25π16+sin25π16)2−2sin25π16cos25π16]
This can be written as
⇒[(cos27π16+sin27π16)2−42sin27π16cos27π16]+[(cos25π16+sin25π16)2−42sin25π16cos25π16]
⇒[(cos27π16+sin27π16)2−12(2sin7π16cos7π16)2]+[(cos25π16+sin25π16)2−12(2sin5π16cos5π16)2]
We know that ⇒sin2θ+cos2θ=1 and 2sinθcosθ=sin2θ
Using these properties we get,
⇒[1−12sin2(2×7π16)]+[1−12sin2(2×5π16)]
⇒[1−12sin2(7π8)]+[1−12sin2(5π8)]
⇒2−12sin2(7π8)−12sin2(5π8)
⇒2−12[sin2(7π8)+sin2(5π8)]
This can be written as
⇒2−12[sin2(π−π8)+sin2(π−3π8)]
⇒2−12[sin2(π8)+sin2(3π8)]
⇒2−12[sin2(π8)+sin2(π2−π8)]
⇒2−12[sin2(π8)+cos2(π8)]
⇒2−12[1]
⇒2−12=32
Therefore, ⇒sin4π16+sin43π16+sin45π16+sin47π16=32