wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of sin4π16+sin43π16+sin45π16+sin47π16

Open in App
Solution

Given
sin4π16+sin43π16+sin45π16+sin47π16

We know that sin(π2θ)=cosθ

and sin(πθ)=sinθ
Now,

sin4π16+sin43π16+sin45π16+sin47π16

This can be written as

sin4(π27π16)+sin4(π25π16)+sin45π16+sin47π16

cos47π16+cos45π16+sin45π16+sin47π16

(cos47π16+sin47π16)+(cos45π16+sin45π16)

We know that a4+b4=(a2+b2)22a2b2

Using this property we get,

[(cos27π16+sin27π16)22sin27π16cos27π16]+[(cos25π16+sin25π16)22sin25π16cos25π16]

This can be written as
[(cos27π16+sin27π16)242sin27π16cos27π16]+[(cos25π16+sin25π16)242sin25π16cos25π16]

[(cos27π16+sin27π16)212(2sin7π16cos7π16)2]+[(cos25π16+sin25π16)212(2sin5π16cos5π16)2]

We know that sin2θ+cos2θ=1 and 2sinθcosθ=sin2θ

Using these properties we get,

[112sin2(2×7π16)]+[112sin2(2×5π16)]

[112sin2(7π8)]+[112sin2(5π8)]

212sin2(7π8)12sin2(5π8)

212[sin2(7π8)+sin2(5π8)]

This can be written as

212[sin2(ππ8)+sin2(π3π8)]

212[sin2(π8)+sin2(3π8)]

212[sin2(π8)+sin2(π2π8)]

212[sin2(π8)+cos2(π8)]

212[1]

212=32

Therefore, sin4π16+sin43π16+sin45π16+sin47π16=32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon