The correct option is
B 116(sin5θ−5sin3θ+10sinθ)Let
x=cosθ+isinθ, xn=cosnθ+isinnθ...(By Demovier's thm)
⇒1x=cosθ−isinθ
Therefore
x−1x=2isinθ And xn−1xn=2isinnθ
Therefore
(x−1x)5=32isin5θ
x5−5x3+10x−10x+5x3−1x5=32isin5θ
(x5−1x5)−5(x3−1x3)+10(x−1x)=32isin5θ
2i[sin5θ−5sin3θ+10sinθ]=32isin5θ
116(sin5θ−5sin3θ+10sinθ)=sin5θ.