Find the value of sin75∘.
Find the value of given trigonometric ratio.
Given trigonometric ratio: sin75∘
sin75∘can be expressed as, sin75∘=sin(45∘+30∘)
We know that sin(A+B)=sinAcosB+cosAsinB
So by applying the above formula we get,
sin75∘=sin45∘cos30∘+cos45∘sin30∘
As, sin45∘=12,cos30∘=32=,cos45∘=12 and sin30∘=12.
By substituting the values we get,
sin75∘=12×32+12×12=322+122=3+122
Hence, the value of sin75∘is 3+122.