Find the value of sin(2tan−113)+cos(tan−1 2√2).
We have, sin(2 tan−113)+cos(tan−1 2√2).
=sin⎡⎣sin−1⎧⎨⎩2×131+(13)2⎫⎬⎭⎤⎦+cos(cos−113) [∵ tan−1 x=cos−11√1+x2][∵ 2tan−1 x=sin−12x1+x2.−1≤ 1 and tan−1(2√2)=cos−113]
=sin[sin−1(231+19)]+13 {∵ cos(cos−1 x)=x, x∈[−1, 1]}=sin[sin−1(2×93×10)]+13=sin[sin−1(35)]+13 [∵ sin(sin−1 x)=x]=35+13=9+515=1415