sin[cot−1{tan(cos−1x)}]Letcos−1x=t⇒x=cost⇒cost=x⇒sect=1x1+tan2t=sec2t⇒tan2t=1x2−1⇒tan2t=1−x2x2⇒tant=√1−x2x⇒t=tan−1√1−x2xSo,sin[cot−1{tan(tan−1√1−x2x)}]=sin[cot−1(√1−x2x)]Letcot−1(√1−x2x)=y⇒coty=√1−x2x⇒siny=x1⇒y=sin−1x⇒sin[cot−1√1−x2x]=sin(sin−1x)=x$