Find the value of sin x in the interval 0 ≤ x ≤ π, satisfying the equation 10sin2x - sinx - 2 = 0.
1/2
10sin2x - sin x - 2 = 0
Or, 10sin2x - 5 sin x + 4 sin x - 2 = 0
Or, 5sinx (2 sin x -1) + 2(2sinx - 1) = 0
Or, (5sin x + 2) (2 sin x- 1) = 0
Or, sin x = -2/5, 1/2
Since in interval 0 ≤ x ≤ π , sin x is always positive.