Find the value of ∑∞i=1 ∑∞j=1 ∑∞k=1 12i2j2k.
8
∑∞i=1 ∑∞j=1 ∑∞k=1 12i2j2k
Since, one summation operator uses only one variable
So,first find the summation for ∑∞k=1 12i2j2k keeping i and j constant.
Similarly extend it for other summation part.
= ∑∞i=1 ∑∞j=1 12i2j (120+121+122+123+.....)
= ∑∞i=1 ∑∞j=1 12i2j [11−12] = ∑∞i=1 ∑∞j=1 22i2j
= 2∑∞i=1 12i [120+121+122+123+.....] = 2∑∞i=1 12i (11−12)
= 4∑∞i=1 12i
= 4 [120+121+122+123+.....∞]
= 4 × 11−12
= 8