Find the value of ∑n−1r=0nCrnCr+nCr+1 when n=100
50
We know, nCr+nCr−1=n−1Cr
⇒nCr+nCr+1=n+1Cr+1
⇒nCrnCr+nCr+1=nCrn+1Cr+1
=n!(n−r)!×r!×(r+1)!×(n−r)!(n+1)!
= r+1(n+1)
⇒∑n−1r=0nCrnCr+nCr+1=∑n−1r=0r+1(n+1)
=1(n+1)(n(n−1)2+n)
=1(n+1)(n(n−1)+2nn)
=1(n+1)(n2+n2)
=1(n+1)(n(n+1)2)
=n2⇒ When n=100, answer = 1002 =50