The correct option is A 3
Need to find:–––––––––––––––– Value of T in 64a4×T––4b4=(18ab)4
L.H.S of the given equation:
64a4×T4b4
=(64×a4)×(T4×b4)
=(6a)4×(Tb)4
=(6a×Tb)4
=(6Tab)4
[∵ Multiplication of exponents with different bases but same exponent: xn×yn=(x×y)n=(xy)n]
And, R.H.S of the given equation (18ab)4. So,
(6Tab)4=(18ab)4.
To make L.H.S = R.H.S, the value of T should be 3, then, L.H.S becomes (6Tab)4=(6×3×ab)4=(18ab)4= R.H.S.
∴T=3, i.e., option (a.) is the correct one.
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->